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1 Funções L de Dirichlet

Como vimos na aula passada, a prova do teorema de Dirichlet passa pelo estudo das
funções L.

Definição (Função L de Dirichlet).

L(s, χ) =
∞∑
n=1

χ(n)

ns
, ℜ(s) > 1.

Como χ(n) = 0 ou χ(n) = raiz da unidade, a série converge absolutamente para
ℜ(s) > 1. Nosso objetivo é mostrar que estas funções possuem extensão meromorfa à
região ℜ(s) > 0. Para isto, usamos o seguinte resultado:

Lema. Seja q ∈ Z>0 e χ um caractere módulo q.

i) Se χ ̸= χ0, ∣∣∣∣∣∑
n≤x

χ(n)

∣∣∣∣∣ ≤ ϕ(q)

ii) Se χ = χ0, ∣∣∣∣∣∑
n≤x

χ0(n)−
ϕ(q)

q
x

∣∣∣∣∣ ≤ 2ϕ(q)

Prova:

Pelas relações de ortogonalidade, se χ ̸= χ0,
q∑

n=1

χ(n) = 0.

Pela periodicidade, temos para todo k ≥ 0,

kq∑
n=(k−1)q+1

χ(n) = 0.
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Logo,

∑
n≤x

χ(n) =

q∑
n=1

χ(n) + · · ·+
kq∑

n=(k−1)q+1

χ(n) +
∑

kq+1≤n≤x

χ(n)

=
∑

kq+1≤n≤x

χ(n)

onde k = ⌊x
q
⌋. Assim,∣∣∣∣∣∑

n≤x

χ(n)

∣∣∣∣∣ ≤ ∑
kq+1≤n≤x

|χ(n)|

= #{kq + 1 ≤ n ≤ x; gcd(n, q) = 1}.

Como x < (k + 1)q, o número de inteiros no intervalo {kq + 1, . . . , (k + 1)q} coprimos
com q é no máximo ϕ(q), já qie {kq+1, . . . , (k+1)q} é um Sistema Completo de Restos
módulo q.

Para o caso χ = χ0, a prova é semelhante, com a diferença que

q∑
n=1

χ0(n) = ϕ(q).

Repetindo o argumento acima, segue que

q∑
n=1

χ0(n) = ϕ(q).

Repetindo o argumento acima, segue que∑
n≤x

χ0(n) = ⌊x
q
⌋ϕ(q) +

∑
κq+1≤n≤x

χ0(n)

=
ϕ(q)

q
x−

{
x

q

}
ϕ(q) +

∑
κq+1≤n≤x

χ0(n)

É fácil ver que os dois últimos termos são limitados por ϕ(q).

Consequências

Para q fixo, o lema acima diz que

∑
n≤x

χ(n) =

O(1) se χ ̸= χ0,

ϕ(q)
q

+O(1) se χ = χ0.
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Pelo Teorema 4.13 do Hildebrand, L(s, χ) possui continuação meromorfa na região
ℜ(s) > 0 com um único polo (simples) se χ = χ0 em s = 1 e, além disso,

Ress=1 L(s, χ0) =
ϕ(q)

q
.

Exercício: Sejam σc(χ) e σa(χ) as abscissas de convergência simples e absoluta de
L(s, χ), respectivamente. Mostre que σa(χ) = 1 e

σc(χ) =

0 se χ ̸= χ0

1 se χ = χ0

.

Produto de Euler

Como χ é completamente multiplicativa, vale o produto de Euler para ℜ(s) > 1:

L(s, χ) =
∏
p

(
1 +

χ(p)

ps
+

χ(p2)

p2s
+ · · ·

)
=
∏
p

(
1− χ(p)

ps

)−1

Em particular, para χ = χ0:

L(s, χ0) =
∏
p

(
1− χ0(p)

ps

)−1

=
∏
p∤q

(
1− 1

ps

)−1

Obtemos

L(s, χ0) =
∏
p

(
1− 1

ps

)−1∏
p|q

(
1− 1

ps

)
= ζ(s)

∏
p|q

(
1− 1

ps

)
Como a função

∏
p|q(1−

1
ps
) é uma função inteira e ζ admite uma extrensão mermomorfa

a todo o plano complexo, o mesmo vale para L(s, χ0), utilizando a igualdade acima.
Em particular,

{Zeros de L(s, χ0)} ⊂ {Zeros de ζ(s)} ∪ {Zeros de
(
1− 1

ps

)
, p | q},

porém todos os zeros de 1− 1
ps

estão em {ℜ(s) = 0}. Portanto, perto de s = 1, as funções
L(s, χ0) e ζ(s) são bem parecidas.

O próximo resultado é o ingrediente principal da prova do teorema de Dirichlet:

Teorema (Não-anulação das funções L de Dirichlet). Para χ não principal, L(1, χ) ̸= 0.

Prova: Vamos dividir em dois casos a depender se χ é real ou não-real. Lembre que χ é
real se todos os valores de χ(n) são números reais. Note que isso significa χ(n) ∈ {−1, 0, 1}
ou, alternativamente, que χ2(n) = χ0(n).
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Caso χ não-real

Na prova de que ζ(1 + it) ̸= 0, t ̸= 0, utilizamos a seguinte expressão:

log ζ(σ + it) =
∑
p

∑
m≥1

1

mpmσ
p−imt

De maneira análoga temos:

logL(σ, χ) = log
∏
p

(
1− χ(p)

pσ

)−1

=
∑
p

log

[(
1− χ(p)

pσ

)−1
]

=
∑
p

∑
m≥1

1

mpmσ
χ(p)m.

Note que

χ(p) =

0 se p | q,

eiθp para algum θp ∈ R se p ∤ q.

Substituindo acima, temos que

logL(s, χ) =
∑
p∤q

∞∑
m=1

1

mpmσ
eimθp

Seja χ(p) = eiθp para χ(p) ̸= 0. De maneira análoga:

logL(s, χ2) =
∑
p∤q

∞∑
m=1

1

mpmσ
e2imθp , logL(s, χ0) =

∑
p∤q

∞∑
m=1

1

mpmσ
1.

Assim, definindo

R(s) = 3 logL(s, χ0) + 4 logL(s, χ) + logL(s, χ2),

tem-se

ℜ(R(s)) =
∑
p∤q

∞∑
m=1

1

mpmσ
ℜ(3 + 4eimθp + e2imθp).

Agora,
ℜ(3 + 4eimθp + e2imθp) = 3 + 4 cos(θp) + cos(2θp ≥ 0)

pela identidade trigonométrica 3-4-1. Consequentemente,

ℜ(R(s)) = log
∣∣L(s, χ0)

3L(s, χ)4L(s, χ2)
∣∣ ≥ 0.

Donde segue que
|L(s, χ0)

3L(s, χ)4L(s, χ2)| ≥ 1. (#)
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O resto da orgumento segue exatamente como no Teorema nos números primos: s
Suponha que L(s, χ) tenha um zero em s = 1. Isso significaria que L(s, χ) = (s −

1)F (s), com F (s) meromorfa em uma vizinhança de s = 1. Por outro lado, sabemos que:

• L(s, χ0) =
G(s)
s−1

( com G holomorfa),

• L(s, χ2) = H(s) (com H holomorfa, pois χ2 ̸= χ0).

Substituindo em (#), obtemos

|(s− 1)F (σ)3G(σ)4H(σ)| ≥ 1,

com F, G, H holomorfas em s = 1 Fazendo σ → 1, temos uma contradição.

Caso χ real

Considere a função de convolução f = 1 ∗ χ. Vamos precisar do seguintes resultados:

Lemas Auxiliares

Lema. Seja χ um caractere real e f como acima. Então

f(n) ≥

1 se n é um quadrado

0 caso contrário

Prova Como χ é multiplicativa, f também o é. Logo, basta verificar a desigualdade
acima para potências de primos n = pk. Escreva

f(pk) =
k∑

j=0

χ(pj)

Como χ é real, χ(p) ∈ {−1, 0, 1}. Vamos provar a desigualdade em cada um dos casos.

1. Se χ(p) = −1: f(pk) = 1 + (−1) + 1 + (−1) + · · · = 0

0 se k ímpar,

1 se k par.

2. Se χ(p) = 0: f(pk) = 1 + 0 + · · ·+ 0 = 1.

3. Se χ(p) = 1: f(pk) = 1 + 1 + · · ·+ 1 = k + 1.

veja que em todos os casos temos f(pk) ≥ 0 e, se k é par, vale que f(pk) ≥ 1, concluindo
a prova do lema.

O lema abaixo foi visto há bastante tempo. Segue, por exemplo, somando por partes.
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Lema. ∑
n≤x

1√
n
= 2

√
x+ A+O

(
1√
x

)
O próximo resultado já foi visto caso da função zeta e a prova é análoga. Vamos

escrevê-la aqui por conveniência do leitor.

Lema. Seja χ ̸= χ0 e ℜ(s) = σ > 0.∑
n≤x

χ(n)

ns
= L(s, χ) +O(x−σ)

Prova: Usando a Soma de Abel,∑
n≤x

χ(n)

ns
=

Sχ(x)

xs
+ s

∫ x

1

Sχ(t)t
−s−1dt

Tomando ℜ(s) > 1 e fazendo x → ∞, temos

L(s, χ) = s

∫ +∞

1

Sχ(t)t
−s−1dt.

Além disso , como Sχ(t) =
∑

n≤t χ(n) = O(1), a expressão do lado direito fornece uma
extensão de L(s, χ) para ℜ(s) > 0. Subtraindo as expressões:∑

n≤x

χ(n)

ns
= L(s, χ) +

Sχ(x)

xs
− s

∫ +∞

x

Sχ(t)t
−s−1dt

= L(s, χ) +O(x−σ) +O

(∫ ∞

x

t−σ−1dt

)
= L(s, χ) +O(x−σ).

Prova (da não-anulação de L(1, χ) quando χ é real)

A ideia é mostrar que a função f = 1 ∗ χ é “grande demais” para que Df seja holomorfa
em s = 1.

Considere a soma
S(x) =

∑
n≤x

f(n)√
n
.

Pela minoração f(n) ≥ 1n=□, temos que

S(x) ≥
∑

m≤
√
x

1

m
≫ log x. (⋆)

Por outro lado, pela definição de f :

S(x) =
∑
n≤x

1√
n

∑
n1n2=n

χ(n2) =
∑

n1n2≤x

1
√
n1n2

χ(n2).
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Pelo método da hipérbole (com y =
√
x):

S(x) = SI + SII − SIII ,

onde 

SI =
∑

n1≤
√
x

1
√
n1

∑
n2≤x/n1

χ(n2)√
n2

,

SII =
∑

n2≤
√
x

χ(n2)√
n2

∑
n1≤x/n2

1
√
n1

,

SIII =

 ∑
n1≤

√
x

1
√
n1

 ∑
n2≤

√
x

χ(n2)√
n2

 .

Usando os lemas acima, temos que

SI =
∑

n1≤
√
x

1
√
n1

(
L(1

2
, χ) +O

(
(x/n1)

−1/2
))

= L(1
2
, χ)

(
2x1/4 + A+O(x−1/4)

)
+O

 1√
x

∑
n1≤

√
x

1


= 2L(1

2
, χ)x1/4 +O(1)

SII =
∑

n2≤
√
x

χ(n2)√
n2

(
2

√
x

n2

+ A+O

((
x

n2

)−1/2
))

= 2
√
x
∑

n2≤
√
x

χ(n2)

n2

+ A
∑

n2≤
√
x

χ(n2)√
n2

+O(1)

= 2
√
x
(
L(1, χ) +O(x−1/2)

)
+ A

(
L(

1

2
, χ) +O(x−1/4)

)
+O(1)

= 2L(1, χ)
√
x+O(1)

SIII =
(
2x1/4 + A+O(x−1/4)

) (
L(1

2
, χ) +O(x−1/4)

)
= 2x1/4L(1

2
, χ) +O(1)

De modo que
S(x) = SI + SII − SIII = 2L(1, χ)

√
x+O(1).

Segue que se L(1, χ) = 0, teríamos S(x) = O(x1/4), o que contradiz a estimativa (⋆).
Logo, temos que L(1, χ) ̸= 0 também no caso em que χ é real, concluindo a prova do
teorema. Isso conclui o teorema de Dirichlet e o curso /.
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